Source code for lerot.comparison.StochasticBalancedInterleave

# This file is part of Lerot.
#
# Lerot is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Lerot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with Lerot.  If not, see <http://www.gnu.org/licenses/>.

# KH, 2012/06/19

import argparse

from numpy import asarray, where
from random import random

from .AbstractInterleavedComparison import AbstractInterleavedComparison
from ..utils import split_arg_str


[docs]class StochasticBalancedInterleave(AbstractInterleavedComparison): """Interleave and compare rankers using the stochastic interleave method introduced in Hofmann et al. ECIR'11.""" def _exploration_rate(self, arg_str): x = float(arg_str) if x > 0 and x < 1: return x def __init__(self, arg_str): self.biased = False if arg_str.startswith("-"): parser = argparse.ArgumentParser(description="Parse arguments for " "interleaving method.", prog=self.__class__.__name__) parser.add_argument("-k", "--exploration_rate", type="_exploration_rate", required=True) parser.add_argument("-b", "--biased") args = vars(parser.parse_known_args(split_arg_str(arg_str))[0]) if args["biased"] == "False" or args["biased"] == 0: self.biased = False else: self.biased = True self.k = args["exploration_rate"] else: try: self.k = float(arg_str) except Exception as ex: raise Exception("arg_str should be parseable by argparse, or " "contain a single float value (the exploration rate k); " "could not parse arg_str:", ex)
[docs] def interleave(self, r1, r2, query, length): # get ranked list for each ranker (put in assignment var) l1, l2 = [], [] r1.init_ranking(query) r2.init_ranking(query) length = min(r1.document_count(), r2.document_count(), length) for _ in range(length): l1.append(r1.next()) l2.append(r2.next()) # interleave l = [] a = [] i1, i2 = 0, 0 # randomly pick the list to contribute a document at each rank while len(l) < length: selected = self._pick_list(1, 2) a.append(selected) if selected == 1: while l1[i1] in l: i1 += 1 l.append(l1[i1]) else: while l2[i2] in l: i2 += 1 l.append(l2[i2]) # for balanced interleave the assignment captures the two original # ranked result lists l1 and l2 return (asarray(l), (asarray(l1), asarray(l2), asarray(a)))
def _pick_list(self, l1, l2): # l1 is assumed to be the exploitative list. It is selected with # probability 1 - k return l1 if random() > self.k else l2
[docs] def infer_outcome(self, l, a, c, query): click_ids = where(c == 1) if not len(click_ids[0]): # no clicks, will be a tie return 0 # lowest click c_lowest = click_ids[0][-1] # project back into l1 and l2 click_on_l1 = where(a[0] == l[c_lowest]) click_on_l2 = where(a[1] == l[c_lowest]) lowest_click = -1 if len(click_on_l1[0]) and len(click_on_l2[0]): lowest_click = min(click_on_l1[0][0], click_on_l2[0][0]) elif len(click_on_l1[0]): lowest_click = click_on_l1[0][0] elif len(click_on_l2[0]): lowest_click = click_on_l2[0][0] # get number of clicked documents ranked higher or equal to N # for both lists c1, c2 = 0, 0 for i in click_ids[0]: if where(a[0] == l[i]) <= lowest_click: c1 += 1 if where(a[1] == l[i]) <= lowest_click: c2 += 1 # compensate for bias due to exploration rate if self.k != 0.5 and self.biased == False: n1 = len(where(a[2] == 1)[0]) n2 = len(a[2]) - n1 # avoid division by 0 n1 = 1 if n1 == 0 else n1 n2 = 1 if n2 == 0 else n2 c2 = float(n1) / n2 * c2 # compare and return outcome return -1 if c1 > c2 else 1 if c2 > c1 else 0